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Motivation

« an agile policy to execute agile motor skills amidst obstacles and a recovery policy to prevent failures,
collaboratively achieving high-speed and collision-free navigation

Key Contribution

1.Agile Policy: achieve maximum agility amidst obstacles
Z2.Reach-Avoid Value Network: predict the RA values conditioned on the agile policy as safety indicators
3.Recovery Policy: track desired twist commands (2D linear velocity & yaw angular velocity) that lower the RA values

4.Ray-Prediction Network: predict ray distances as the policies’ exteroceptive inputs given depth image



(1) Stage 1: Policy training.
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(1) Stage 1: Policy training. (a) Training i (b) Deployment
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(1) Stage 1: Policy training. (a) Training i (b) Deployment
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Safe Reinforcement Learning

o« IH 27HAl =78 ASHTF HAEL RS
o End-to-end

= | agranglan-based method

o Hierarchical

» structures of underlying dynamics / control-theoretic safety certificates
o [IMits the scalability to high-dimensional complex systems
= learn safety prediction networks (or safety critics)
o lack interplay between safety critics and backup policies
= focus on estimating the reach-avoid values of the agile policy and feed the reach avoid values’

gradient information back into the system to guide the recovery policy within a closed loop



Reach-Avoid Problems & Hamilton-Jacobi Analysis

« Reach-avoid (RA) problems

o navigating a system to reach a target while avoiding certain undesirable states
o leverage contraction properties to derive a time-discounted reach-avoid Bellman equation

o learn a policy-conditioned RA value network

o ¥*HJ reachability analysis
o Hamilton-Jacobi partial differential equation, which provides a set of states that the system must stay out of

to remain safe

o HJ TIAIE EME Hamilton-Jacobi (HJ) &FAAIS O|E610] A|ARIO| LS s OFM M S EM6H= 17|l
Ct StX|BF O] EA1 7|12 A|AHIO| XI2I0| =0HE =2 AL EXRTETH T|otgmo 2 Stot= 22X Q&ULCH

Ol =0, TE8] Y= 2AIF S804 Ule =2 XS] A|AE0] Tiet 240] Olgs UL

Hamilton-Jacobi Reachability: A Brief Overview and Recent Advances

https://arxiv.org/abs/1709.07523

memo
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Preliminaries

e Goal-conditioned
o goal states: G €T

> policy: T:0OxI'— A
o reward function: r - SxAxT —m R
o Objective:

J(m) = 4:‘ﬁmfsM’r(-\Ot,G),Gwpc; Z'YIt{LT(StaataG)



Preliminaries

® State SetS failure set
o Fallure set. unsafe states like collision F C S C :S— R

se F&((s)>0

target set

o Target set. = goal ®CS [:-S > R
sEO<I(s) <0

o Reach-Avoid set:

T *—o—o—o—o—+ >

T .
gst ( * ) futue trajecotry rollour from state St 5782 (O) = s T

RA™(O; F) :={s; € S| & (T —t) € OA s
vt' € [0,T —t],&; (¢') ¢ F}



Preliminaries

« Reach-Avoid Value

o policy-conditioned reach-avoid values RA*( ) <0 scE RA?T(@ ]_-)
o fixed-point RA Bellman equation Bt

Ol

T2 CHE ==0IA * TODO

=+ (8) = max{{(s), min{l(s), Vg, (f(s,7(s)))} }

o =HM HEZ ?Iol], time-discounted &
failure set target set

rA(8) =7RA maxq((s), minql(s), Vga (f(s,7(s)))}}
+ (1 — yra) max{l(s),{(s)}

ra(8) — VRa+(S)

under -approx.



System Structure

« Dual policy
o agile policy
= 3.1m/sTIHK| goal command 24717 ﬂ-Agﬂe < V > Vihreshold

» target 2D positions and headings
= [N MOSt time
o recovery policy
= twist command 24 THH collision avoid
= 2D linear velocity and yaw rate
= Only risky situation

WRecovery ; V < ‘/threshold

o Exteroceptive inputs
o low-dimensional representation
o 11 rays (sparse LIDAR readings)
o map raw depth img to predicted ray distance
o agile policy@t RA value network®{| observation@ = =0 L




Policy Training

Stagel



(1) Stage 1: Policy training.

Proprioception
—— Exteroception
____ Nauvigation
Command

1

Ground Truth

i w Joint Targets

Agile
Policy

M

(a) Training

e

-

A

" Random

Twist
Command

— Proprioception

e m

---------------

p
Recovery

Policy

~

" RL Optimizer

Joint Targets

>

RL Optimizer

-
Simulation




Agile Policy

o goal-reaching formulation

memo

e train sensorimotor skills that enable the robot to reach specified goals within the episode time w/o collisions

Observation
o foot contacts:.
e Dase angular velocities:
e projected gravity:
e goal commands:
e time left:
e jOINt positions/velocities
e Drevious actions:.
o exteroception

Crc{1,2,3,4}

......................... , State Estimators

......................... s> .IMU-based orientation estimation for g

(i.e., roll and pitch) is usually very accurate,
and our policy can effectively handle the
odometry drift

e change our goal commands even in the run time
e easily overwrite goal commands to achieve instant agile steering

TABLE IX
GOAL COMMANDS FOR INSTANT STEERING

Steering Goal x (m) Goal y (m) Goal Heading (rad)
~ Forward 5 0 0

Stop 0 0 0

Left Turn 2 1.5 5

Rapid Left Turn —2 0 3

Right Turn 2 —1.5 —%

Rapid Right Turn —2 0 -3




Agile Policy

o goal-reaching formulation
e train sensorimotor skills that enable the robot to reach specified goals within the episode time w/o collisions

Action
e 12-d joint targets

e PD controller tracks these joint targets T = Kp(a — q) — K g
o fully-connected MLP



Agile Policy

o goal-reaching formulation
e train sensorimotor skills that enable the robot to reach specified goals within the episode time w/o collisions

Reward ' = Tpenalty T Ttask T T'regularization
e Penalty
e Task G° Tpenalty = —100 - 1( undesired collision )

e Regularization

T'task — 60 - T"possoft + 60 - T'postight + 30 - Theading
— 10 - 7stang + 10 - Tagile — 20 - 7gtan

RL-based navigation planners:
free from explicit motion constraints such as target velocities that may limit the agility

T'track (possoftpostight /heading) — ) H orror ‘2 . T — 0.0005 - ||'T||% — 20 - Z ReLU(|7;| — 0.85 - 7, 1im )
—+ r i=1

T'regularization — -2 Ug —0.05- (wi + wj) — 20 (g:?," + 932})

g

12
s ~0.0005 - |13 —20- > ReLU(|ds| — 0.9 d; )

1=1

12
e
— 20 - E ReLU(|qz| — 0.95 - qz-, Iim)
Fig. 3. Example training environments. The magenta points indicate the i=1
goals, and the bluegreen lines indicate the exteroceptive ray observations. _7 w12 _6 . 112
—2x107" - |l4]lz —4x 107" - ||all; — 20 - 1(fly )

Terrains from left to right: flat, low stumbling blocks, and rough. N y




Agile Policy

o goal-reaching formulation

memo

e train sensorimotor skills that enable the robot to reach specified goals within the episode time w/o collisions

Simulation Training
e Isaac Gym / 1280 environment/PPO
« flat, rough, or low stumbling blocks(height difference from O cm to 7 cm)
o cylinders of 40 cm radius / 0~8 obstacles randomly distributed in [11 mX 5 m|
« two DRs are critical: illusion & ERFI-50
o Illusion: policy more robust to unseen geometries such as walls: it
overwrites the observed ray distances
o ERFI-50:randomly bias the joint positions to model the motor encoders’
offset errors
o Curriculum learning LR e Fon

DOMAIN RANDOMIZATION SETTINGS FOR AGILE POLICY TRAINING

TABLE II

Term Value
Observation
[lusion Enabled

Joint position noise

Joint velocity noise

Angular velocity noise

Projected gravity noise

log(ray distance) noise
Dynamics

ERFI-50 [8]

Friction factor

Added base mass

Joint position biases
Episode

Episode length

Initial robot position

Initial robot yaw

Initial robot twist

Goal Position

Goal Heading

U(—0.01,0.01) rad
U(—1.5,1.5) rad/s
U(—0.2,0.2) rad/s
U(—0.05,0.05)
U(—0.2,0.2)

0.78 N mx difficulty level
U(0.4,1.1)

U(—1.5,1.5) kg
U(—0.08,0.08) rad

U(7.0,9.0) s
r=0,y=0

U(—m, ) rad
U(—0.5,0.5) m/s or rad/s
Tgoal ~ U(1.5,7.5) m
yg@al i Z/{(—Q,U', 20) m

arctan Z(yguah -Tgoﬂ]) +U(—0.3,0.3) rad
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(ii) Stage 2: Network training from agile policy rollout data.
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RA Learning

o To safeguard the robot, we propose to use RA values to predict the failures, and then a recovery policy can save
the robot based on the RA values.
« Not learn the global RA values, but make it policy-conditioned

RA value exteroception
| | | RA . e
o Use a reduced set of observations as the inputs of the RA value function 0, — [’U, (.U], G:z: y R
e train an RA value network ’

network base twists  the goal (x, y) position

il in the robot frame
gile A
wa (8) =V (ORA)

loss 1 T . ~tarcet \ 2
L = —Z (V(O?A) —Vt gt)
T t=1 L
5 Vtarget

s maX{C(st), min{l(st), PO (oﬁf‘l) } }
+ (1 — yra) max{l(s:), ((s¢) }



RA Learning

o To safeguard the robot, we propose to use RA values to predict the failures, and then a recovery policy can save
the robot based on the RA values.
Not learn the global RA values, but make it policy-conditioned

Implementation Jtar ~old
P _ _ _ _ Vta et =9RA max{((st),min{l(st),vo (Oﬁ_Al)}}
o I(s) and &(s) should be Lipschitz continuous for theoretical guarantees
o define: + (1 — yra) max{l(s:), C(st)}
d
goal
target set Z(S) — tal’lh log bounding it with (—1, 1), and setting dgoal < Otight as “reach”

Otight

miveset  ((8) = 2 % 1( undesired collision ) — 1

soften the function in a hindsight way
( values for the last 10 timesteps are relabelled to be —0.8, —0.6,...,0.8, 1.0
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Lipschitz
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Fig. 4. Visualization of V with different linear velocities and 2D positions
relative to the 3 fixed obstacles. The angular velocities are set to zero, and
the relative goal commands are set to 5 m ahead of the robot. The grey
circles represent the obstacles, and the colors represent the values of V' at
corresponding 2D positions. The first row presents the RA values trained
with the softened failure function ¢, while the second row uses the raw one
in Equation (19). Without softening ¢ to approach the Lipschitz continuity,
the value estimation fails to indicate collisions on the sides of obstacles and
has local minima in front of the obstacles, compromising safety.




RA Learning

o To safeguard the robot, we propose to use RA values to predict the failures, and then a recovery policy can save
the robot based on the RA values.
« Not learn the global RA values, but make it policy-conditioned

For Recovery
« Robot decides the optimal twist to avoid collisions using the RA value function,
and employs the recovery policy to track these twist command
e recovery policy Is triggered as a backup shielding policy it and only if V(ORA) > Vihreshold
o recovery policy 1t targettingot= twist cmd 0.05

tw’ = [’Ui, vy, 0, 0,0, wﬂ

approximate distance to the goal after tracking the twist command
for a small amount of time 6t =0.05 s

tw® = arg min(d.™) s.t. V([tw®; GS 5 R]) < Vihreshold

goal x,y"?

,———

™ doxr = vt — 0.5v;w§5t2

8y = VS8t + 0.505wS bt
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Fig. 8. An example case in simulation where 72 fails to reach the goal. a)
Trajectories of ABS and other baselines, with RA values visualized for ABS.
b) The velocity-time curves showing that ABS is much faster than the LAG
baseline. c¢) Illustrations of the RA value landscape when the recovery policy
is triggered at (I) and (II), projected in the v, — w: plane and the v, — vy
plane. We show the initial twist before search (i.e., the current twist of the
robot base) and the searched commands based on Equation (21).



(1) Stage 1: Policy training.
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Recovery Policy

o make the robot track a given twist command as fast as possible

Observation

. foot contacts: Cfe{1,2,3,4}
e Dase angular velocities:. W
e projected gravity: 9 OReC
e twist commands(only non-zero) tw® = [vfc,'u;, 0,0, O,wﬂ
e jOoINt positions/velocities: q q
e Previous actions: a
Action

e 12-d joint targets
e PD controller tracks these joint targets
o fully-connected MLP



Recovery Policy

memo

o make the robot track a given twist command as fast as possible

Reward

» Penalty T = Tpenalty T Ttask T Tregularization
e Task

e Regularization

T'task — 10 - Tlinvel — 0.9 - T'angvel +9- Talive — 0.1- T'posture

(v — ’Ug)2 + (’vy — v§)2 ]
2

Jlinvel

Tinvel — €XP | —

T'angvel — sz o wg“%

raive = 1+ 1( alive )

Tposture — ”q — G ree ||1



Recovery Policy

o make the robot track a given twist command as fast as possible

Simulation Training
« Similar to Agile policy setting
o episode length Is changed to 2 s
o some DR ranges are modified - these changes better accommodate the states
that can trigger the recovery policy during the agile running.



(ii) Stage 2: Network training from agile policy rollout data.
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Perception

« both the agile policy and the RA value network use the exteroceptive 11-d ray distances as part of the
observations, with access to their ground truth values during training

Ray-prediction network

o collect a dataset of pairs of depth images and ray distances - i
. . Simulation Perceptlmﬂ ramn ( Ray-Prediction
o Data Augmentation for Sim-to-Real Dataset et

e To make the network focus more on close obstacles, take the

logarithm of depth values as the NN inputs (' I Wv) ( W
e ResNet-18 with pretrained welights _

Vase Human Cone Cylinder

Original Image : Horizontal Flip Random Erase Gaussian Blur Gaussian Noise

Fig. 6. Illustration of four kinds of image augmentation used for depth-based -

ray-prediction training.

Oaktree Office Chair  Fold Chair  Dining Chair

Fig. 5. Various obstacles used for ray-prediction data collection.
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(b) Deployment
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Baselines

1.ABS system, with both the agile policy and the recovery policy

2.0ur agile policy = Agile only

memo

3.LAG: we use PPO-Lagrangian to train end-to-end safe RL policies with the agile policy’s formulation

o Simulation

o 3 variants for each setting:
= an aggressive one (“-a”) doubling the agile reward term Tagile
= 3 nominal one (“-n”)

= a conservative one (“-c”) halving the Tagile

o distribute eight obstacles within a 5.5 mX 4 m rectangle
(during training it was 11 mXx 5 m)

BENCHMARKED COMPARISON IN SIMULATION

Success Rate (%)

Collision Rate (%)

Timeout Rate (%)

Upeak Of Success (m/s)

v of Success (m/s)

ABS-a 789+14 4.4+£0.5 16.7£1.9 3.74£0.02 2.15+0.04
ABS-n 79.1+:4.4 5.7%£2.9 15.242.1 3.4840.06 2.08x0.01
ABS-c 85.815.6 2.9+0.7 11.3£5.1 2.9840.12 1.87£0.03
mhgile_g 73.344.3 26.1+4.4 0.610.1 3.83:£0.03 2.5510.03
mhsile_p 773142 21.7£39 1.0+04 3.55£0.04 2.391+0.04
mAgile_¢ 83.2+1.7 15.5£2.0 1.3+0.6 3.0410.13 2.04x0.08
LAG-a 82.516.0 10.9£2.6 6.61+4.5 2.7040.13 1.69£0.09
LAG-n 77.4E11.5 9.1x1.8 13.5£13.0 2.4540.07 1.41£0.03
LAG-c 49.1£8.4 7.412.7 43.5+11.1 2.4540.10 1.12£0.08

*Bold values: the mean falls within the range of topl’s mean £ topl’s std.

ABS-a N
2 F ABS-n
ABS-C
n.Ag Ie_a
n.Ag Ie_n —
n.Ag Ie_c

LAG-a

LAG-n

LAG-cC
I | ] ]

70 80 90 100
Non-Collision Rate (%)
Fig. 7. Illustration of agility-safety trade-off in benchmarked comparison.
Agility is quantified by the average speed achieved in success cases while
safety 1s represented by the non-collision rate. Points indicate the mean values,
and error bars indicate the std values.

Success Cases (m/s)
o 2 o 2

v in




Baselines

1.ABS system, with both the agile policy and the recovery policy
2.0ur agile policy = Agile only
3.LAG: we use PPO-Lagrangian to train end-to-end safe RL policies with the agile policy’s formulation

o Simulation
o Example Case
= starting from (0O, 0) needs to run through 8 obstacles to reach the goal (7, O)
= first go through an open space, followed by two tight spaces, and then another open space
= ABS runs fast in the open spaces, and slows down in the tight spaces for safety thanks
to the shielding of RA values and the recovery policy
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Fig. 8. An example case in simulation where 72 fails to reach the goal. a)
Trajectories of ABS and other baselines, with RA values visualized for ABS.
b) The velocity-time curves showing that ABS is much faster than the LAG
baseline. c¢) Illustrations of the RA value landscape when the recovery policy
is triggered at (I) and (II), projected in the v, — w: plane and the v, — vy
plane. We show the initial twist before search (i.e., the current twist of the
robot base) and the searched commands based on Equation (21).



Baselines

1.ABS system, with both the agile policy and the recovery policy

2.0ur agile policy = Agile only

3.LAG: we use PPO-Lagrangian to train end-to-end safe RL policies with the agile policy’s formulation

o Real-World
o HW setup

» GO1, Orin NX, Zed MinI Stereo Camera

o two Indoor and one outdoor testbeds

Success | Collision Time Cost

9,/10 1/10 5.918

7/10 3,/10 5.06 s

8/10 2/10 6.80 s
Success | Collision [Time Cost
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Speed Test
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Fig. 10. Robustness Tests of our ABS system, a) in snowy terrain,s b) bearing

a 12-kg payload, c¢) against a ball hit when running, and d) withstand a kick
when standing at the goal.



EXTENSIVE STUDIES AND
ANALYSES



Maximizing Agility

« Goal-Reaching v.s. Velocity-Tracking
o CHEE velocity tracking &A= Fat
o goal reaching Is a better choice because it does not decouple locomotion and navigation for
collision avoidance and can fully unleash the agility that is learned

TABLE IV

GOAL-REACHING POLICY V.S. VELOCITY-TRACKING POLICY

memo

Term Our rhelle Rapid [45]
Gait patterm gallop near trot
Max #. uncontrollable DoFs 1 3
Peak vel. in simulation 4.0 m/s 4.1 m/s
Peak torque 1 simulation 23.5 Nm 35.5 Nm
Peak joint vel. in simulation 22.0 rad/s 30.0 rad/s
Peak vel. 1n real world 3.1 m/s 2.0 m/s

Collision avoidance
Fully unleashed agility
Changing vel. for steering
Curriculum learning

as trained

as trained
in distribution
straightforward

need high-level commands

non-trivial for high level
out of distribution
carefully designed




Maximizing Agility

o Effects of illusion and ERFI-50 randomization
o Two key components we add in domain randomization
o Without the illusion, the robot will sometimes tremble near a wall which 1t has never seen in simulation
o Without ERFI-50, the robot will hit the ground with its head during running due to the sim-to-real gap In
motor dynamics

w/0 ERFI-50 w/ ERFI-50

w/o 1llusion w/ 1llusion

Fig. 11. Effects of illusion and ERFI-50 randomization. The robot will
tremble near a wall without 1llusion randomization and will hit the ground
during running without ERFI-50 randomization.

memo



Extensive Studies on RA Values

« Selecting safety threshold
o For safety shielding, we choose Vthreshold = =0.05
o Scanning Vthreshold from —=0.001 to —0.1 brings no significant change in the overall performance
o the collision rate slightly decreases as expected whereas the success rate also slightly decreases

o Soft Lipschitz continuity for the failure indicator
o soften the discrete collision indicator to approach the Lipschitz continuity
o significantly enhances the safety of our system while slightly increasing the conservativeness

TABLE V TABLE VI
EFFECTS OF DIFFERENT Vipgresuorn ON ABS EFFECTS OF SOFTENED FAILURE INDICATOR ON ABS
Vihreshold -0.001 -0.01 -0.05 -0.1 ABS w/ softened ¢  ABS w/o softened gl
Success Rate (%) 78.04+2.1 78.1+3.4 79.1+4.4 7584+ 2.0 Success Rate (%) 79.1+4.4 81.7+1.3 77.3+4.2
Collision Rate (%) 5.0+0.6 58+19 5.7+2.9 4.34+0.6 Collision Rate (%) 3.7x2.9 14.7x1.5 21.7+3.9
Upeak Of Success (m/s)  3.42+0.06 3.46+0.08 3.48+0.06 3.424+0.05 Upeak Of Success (m/s) 3.48+0.06 3.4510.06 3.5350.04
v of Success (m/s) 2.084+0.02 2.0840.01 2.084+0.01  2.054 0.03 v of Success (m/s) 2.08x0.01 2.27x0.03 2.390.04

0.1 is considered big given that
"V is bounded between —1 and1l



Enhancing Perception Training

« Several factors
o network architecture
o pretrained weights
o data augmentation
 For real-time high-speed locomotion, we opt for ResNet-18, balancing accuracy and responsiveness in
dynamic environments

TABLE VIII
PERFORMANCE METRICS FOR DIFFERENT NETWORK ARCHITECTURES
AND TRAINING APPROACHES

Architecture Test Set MSE  Inference Time (ms)
EfficientNet-BO* 3.627 x 102 19
MobileNet-V2# 3.387 x 1072 15
ResNet-34 3.081 x 1072 14
ResNet-18 3.238 x 1072 9
ResNet-18 (w/o pretraining) 3.526 x 102 9
ResNet-18 (w/o augmentation)  3.393 x 10— 2 9

* We use the PyTorch-ONNX pipeline where the implementations of these network
architectures may be not fully optimized.



Failure Cases and Limitations

« when the obstacles are too dense and form a local minimum

o The RA values are learned with static obstacles, and can only generalize to quasi-static environments
o predict the motions of the obstacles in the future

o [iImit the robot behaviors to only 2D locomotion and constrain the motions to have no flying phase
o For 3D terrains such as stairs and gaps

« implicit system identification techniques

e vision system needs further improvement
o Indoor (a) testbed, the only collision of ABS is due to the “undetected” objects by the ray-prediction

network as the corridor Is guite dim.
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