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Motivation

Key Contribution

an agile policy to execute agile motor skills amidst obstacles and a recovery policy to prevent failures,

collaboratively achieving high-speed and collision-free navigation

Agile Policy: achieve maximum agility amidst obstacles1.

Reach-Avoid Value Network: predict the RA values conditioned on the agile policy as safety indicators2.

Recovery Policy: track desired twist commands (2D linear velocity & yaw angular velocity) that lower the RA values3.

Ray-Prediction Network: predict ray distances as the policies' exteroceptive inputs given depth image4.
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Safe Reinforcement Learning

크게 2가지 부류의 연구가 진행되고 있음

End-to-end

Lagrangian-based method

Hierarchical

structures of underlying dynamics / control-theoretic safety certificates

limits the scalability to high-dimensional complex systems

learn safety prediction networks (or safety critics)

lack interplay between safety critics and backup policies

focus on estimating the reach-avoid values of the agile policy and feed the reach avoid values’

gradient information back into the system to guide the recovery policy within a closed loop
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Reach-Avoid Problems & Hamilton-Jacobi Analysis

Reach-avoid (RA) problems

navigating a system to reach a target while avoiding certain undesirable states

leverage contraction properties to derive a time-discounted reach-avoid Bellman equation

learn a policy-conditioned RA value network

*HJ reachability analysis

Hamilton-Jacobi partial differential equation, which provides a set of states that the system must stay out of

to remain safe

HJ 가시성 분석은 Hamilton-Jacobi (HJ) 방정식을 이용하여 시스템의 도달 가능성과 안전성을 분석하는 기법입니

다. 하지만 이 분석 기법은 시스템의 차원이 높아질수록 계산 복잡도가 기하급수적으로 증가하는 문제가 있습니다.

이 때문에, 기존의 방법으로는 실시간 응용이나 매우 높은 차원의 시스템에 대한 분석이 어렵습니다.

memo

Hamilton-Jacobi Reachability: A Brief Overview and Recent Advances
https://arxiv.org/abs/1709.07523

https://arxiv.org/abs/1709.07523


Preliminaries

Goal-conditioned

goal states:

policy:

reward function:

objective:
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futue trajecotry rollour from state

State Sets

Failure set: unsafe states like collision

Target set: = goal

Reach-Avoid set:

Preliminaries memo

failure set

target set
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Reach-Avoid Value

policy-conditioned reach-avoid values

fixed-point RA Bellman equation 만족

수렴성 보장을 위해, time-discounted 적용

Preliminaries memo

증명은 다른 논문에서 * TODO 

under -approx.

failure set target set



Dual policy

agile policy

3.1m/s까지 goal command 따라가기

target 2D positions and headings

in most time

recovery policy

twist command 따라가며 collision avoid

2D linear velocity and yaw rate

only risky situation

Exteroceptive inputs

low-dimensional representation

11 rays (sparse LiDAR readings)

map raw depth img to predicted ray distance

agile policy와 RA value network에 observation으로 들어감

System Structure memo



Policy Training
Stage1
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Observation

foot contacts:

base angular velocities:

projected gravity:

goal commands:

time left:

joint positions/velocities

previous actions:

exteroception 

memo

change our goal commands even in the run time
easily overwrite goal commands to achieve instant agile steering

Agile Policy

goal-reaching formulation

train sensorimotor skills that enable the robot to reach specified goals within the episode time w/o collisions

State Estimators
:IMU-based orientation estimation for g

(i.e., roll and pitch) is usually very accurate,

and our policy can effectively handle the

odometry drift



Action

12-d joint targets

PD controller tracks these joint targets

fully-connected MLP 

memoAgile Policy

goal-reaching formulation

train sensorimotor skills that enable the robot to reach specified goals within the episode time w/o collisions



Reward

Penalty

Task

Regularization 

memo

RL-based navigation planners:

free from explicit motion constraints such as target velocities that may limit the agility

Agile Policy

goal-reaching formulation

train sensorimotor skills that enable the robot to reach specified goals within the episode time w/o collisions



Simulation Training
Isaac Gym / 1280 environment/PPO

flat, rough, or low stumbling blocks(height difference from 0 cm to 7 cm)

cylinders of 40 cm radius / 0∼8 obstacles randomly distributed in [11 m× 5 m] 

two DRs are critical: illusion & ERFI-50

illusion: policy more robust to unseen geometries such as walls: it

overwrites the observed ray distances

ERFI-50:randomly bias the joint positions to model the motor encoders’

offset errors

Curriculum learning

memoAgile Policy

goal-reaching formulation

train sensorimotor skills that enable the robot to reach specified goals within the episode time w/o collisions



Network Training
Stage2
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RA value
use a reduced set of observations as the inputs of the RA value function

train an RA value network

memo

network

loss

the goal (x, y) position
in the robot frame

exteroception

base twists

RA Learning

To safeguard the robot, we propose to use RA values to predict the failures, and then a recovery policy can save

the robot based on the RA values.

Not learn the global RA values, but make it policy-conditioned



bounding it with (−1, 1), and setting                ≤                  as “reach”

Implementation
l(s) and ζ(s) should be Lipschitz continuous for theoretical guarantees

define:

memo

soften the function in a hindsight way
ζ values for the last 10 timesteps are relabelled to be −0.8, −0.6, . . . , 0.8, 1.0

RA Learning

To safeguard the robot, we propose to use RA values to predict the failures, and then a recovery policy can save

the robot based on the RA values.

Not learn the global RA values, but make it policy-conditioned

failure set

target set







For Recovery
Robot decides the optimal twist to avoid collisions using the RA value function,

and employs the recovery policy to track these twist command

recovery policy is triggered as a backup shielding policy if and only if

recovery policy가 targetting하는 twist cmd

memo

approximate distance to the goal after tracking the twist command
for a small amount of time δt = 0.05 s

-0.05

RA Learning

To safeguard the robot, we propose to use RA values to predict the failures, and then a recovery policy can save

the robot based on the RA values.

Not learn the global RA values, but make it policy-conditioned
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Observation
foot contacts:

base angular velocities:

projected gravity:

twist commands(only non-zero)

joint positions/velocities:

previous actions:

memoRecovery Policy

make the robot track a given twist command as fast as possible

Action

12-d joint targets

PD controller tracks these joint targets

fully-connected MLP 



Reward
Penalty

Task

Regularization 

memoRecovery Policy

make the robot track a given twist command as fast as possible



memoRecovery Policy

make the robot track a given twist command as fast as possible

Simulation Training
Similar to Agile policy setting

episode length is changed to 2 s

some DR ranges are modified - these changes better accommodate the states

that can trigger the recovery policy during the agile running.
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memoPerception

both the agile policy and the RA value network use the exteroceptive 11-d ray distances as part of the

observations, with access to their ground truth values during training

Ray-prediction network
collect a dataset of pairs of depth images and ray distances

Data Augmentation for Sim-to-Real

To make the network focus more on close obstacles, take the

logarithm of depth values as the NN inputs

ResNet-18 with pretrained weights



Deployment
Real world





Experiments



Simulation

3 variants for each setting: 

an aggressive one (“-a”) doubling the agile reward term 

a nominal one (“-n”)

a conservative one (“-c”) halving the 

distribute eight obstacles within a 5.5 m× 4 m rectangle

(during training it was 11 m× 5 m)

memoBaselines
ABS system, with both the agile policy and the recovery policy1.

Our agile policy π Agile only2.

LAG: we use PPO-Lagrangian to train end-to-end safe RL policies with the agile policy’s formulation3.



Simulation

Example Case

starting from (0, 0) needs to run through 8 obstacles to reach the goal (7, 0)

first go through an open space, followed by two tight spaces, and then another open space

ABS runs fast in the open spaces, and slows down in the tight spaces for safety thanks

to the shielding of RA values and the recovery policy

memoBaselines
ABS system, with both the agile policy and the recovery policy1.

Our agile policy π Agile only2.

LAG: we use PPO-Lagrangian to train end-to-end safe RL policies with the agile policy’s formulation3.





Real-World

HW setup

Go1, Orin NX, Zed Mini Stereo Camera

two indoor and one outdoor testbeds

memoBaselines
ABS system, with both the agile policy and the recovery policy1.

Our agile policy π Agile only2.

LAG: we use PPO-Lagrangian to train end-to-end safe RL policies with the agile policy’s formulation3.





EXTENSIVE STUDIES AND

ANALYSES



Goal-Reaching v.s. Velocity-Tracking

대부분 velocity tracking 방식을 취함

goal reaching is a better choice because it does not decouple locomotion and navigation for

collision avoidance and can fully unleash the agility that is learned

memoMaximizing Agility



Effects of illusion and ERFI-50 randomization

Two key components we add in domain randomization

Without the illusion, the robot will sometimes tremble near a wall which it has never seen in simulation

Without ERFI-50, the robot will hit the ground with its head during running due to the sim-to-real gap in

motor dynamics

memoMaximizing Agility



Selecting safety threshold

For safety shielding, we choose Vthreshold = −0.05
Scanning Vthreshold from −0.001 to −0.1 brings no significant change in the overall performance

the collision rate slightly decreases as expected whereas the success rate also slightly decreases

Soft Lipschitz continuity for the failure indicator

soften the discrete collision indicator to approach the Lipschitz continuity

significantly enhances the safety of our system while slightly increasing the conservativeness

memo

0.1 is considered big given that
ˆV is bounded between −1 and1

Extensive Studies on RA Values



Several factors

network architecture

pretrained weights

data augmentation

For real-time high-speed locomotion, we opt for ResNet-18, balancing accuracy and responsiveness in

dynamic environments

memoEnhancing Perception Training



when the obstacles are too dense and form a local minimum

The RA values are learned with static obstacles, and can only generalize to quasi-static environments

predict the motions of the obstacles in the future

limit the robot behaviors to only 2D locomotion and constrain the motions to have no flying phase

For 3D terrains such as stairs and gaps

implicit system identification techniques

vision system needs further improvement

Indoor (a) testbed, the only collision of ABS is due to the “undetected” objects by the ray-prediction

network as the corridor is quite dim.

memoFailure Cases and Limitations



END


